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Abstract

The Weibull distribution model for brittle fracture
is applied to a hole size study in uniaxial tension and
to a study in biaxial tension. This application of the
Weibull model uses a numerical integration of stress
functions across a high-failure-risk volume. The results
for uniaxial tension indicate a hole size effect which
agrees in form with the "point-stress" or characteristic
dimension theory. The wuniaxial strength predictions
based on Weibull theory are uniformly conservative. The
predictions also show increasing notch sensitivity as
the material becomes more "perfect", thét is, has fewer
and smaller inherent flaws. The biaxial Weibull study
accurately predicts the failure mode and the strengthen-
ing effect of biaxial tension. The biaxial strength pre-

dictions are also generally conservative.
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Author's Note on Weibull Statistics

It is important for the reader to realize the difference
between the use of Weibull statistics for curve fitting and

the calculation of "Weibull-type integrals."

The Weibull distribution may be used purely as a curve-'
fit scheme. 1In this use, it has general utility, much as a
normal distribution or any other distribution for describing
data scatter. This paper, however, uses a much more specific
application, that of "Weibull-type integrals." In this appli-
cation, the parameters of the Weibull distribution have
physical significance; they are related to stress and geometry
variables. These integrals attempt to calculate parameters
for a Weibull distribution, rather than simply infer them

from data as in a curve-fit scheme.




Introduction

The problem of strength degradation in the presence
of a notch is important to the materials designer. These
notches may be introduced intentionally, as in the case
of bolt holes or cutouts, or unintentionally, as in the
case of a materials fabrication error or a fatigue crack.
The designer needs formulae which help him estimate
strength "knock-down factors" for his design; he also
needs a way of comparing the notch sensitivity of dif-
ferent materials. Predictions of notch sehsitivity at
a variety of hole sizes based on the finite state of

stress in the material have been successful,

[Pipes, Wetherhold, Gillespiel,[Pipes, Gillespie, Wetherhold].
This model is known also as the "point-stress" model.’
The meaning of the notch sensitivity parameters found
in the above réferences has not, however, been relateé

to any specific physical variables.

Another important factor for a materials designer
is to understand how the inherent variability of his
material will affect design. Factors of reliability must
often be calculated based on a number of strength data
to insure a certain low probability of failure. Weibull
statistics are often employed as a good way of calculating

reliability.
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This paper joins the strength degradation predictions
of the point-stress model to the use of Weibull statistics.
In this way, the parameters contained in the point-stress
strength equations are related to the unnotched tensile
strength data scatter. Thus, the variability in unnotched
strength is related to the strength degradation in the
presence of a notch or flaw. The specific calculations
in this paper are for both through-holes and slits (notches)
in a uniaxial tension plate, and for through-holes in a

biaxial tension plate.
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Part 1 UNIAXIAL TENSION

1.1 Weibull Theory

The Weibull brittle failure model may be used to
predict conservative failure loads for notched composites.
The prediction is based on an integration which, ideally,
would be over the entire stressed volume. For a plane
stress state of a notched plate with one predominant

stress direction "x," the stress state may be given by
o]
o (x,y) =0 t(x,y) 1.1

where 0: is the far field stress, and t(x,y) is a

geometric locus. [see Appendix B]. See Fig. la. In general,

t(x,y) would come from a complex variable solution for
stress. Fig. la shows an elliptic center through-notch,

although the actual notch could be any shape.

Using the results of Appendix A, we note that the
average far-field failure stress can be found as follows.
The stress integral used in reliability calculations is

a
B(oo) = f (£ av 1.2
X B
v
where we assume that ¢ = Oy is the predominant stress.
Since equation 1.1 introduces the geometric variation in

stress, we may write
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a
av = J
v

Note that o° may be removed from the integral. In order
to place equation 1.3 in a standard form, we define a

new notch scale parameter (dependent on notch geometry)

by:

o -1/0
BN =<f [t(x,y) ]dV> B 1.4
v

This way, the reliability function R for probability of

1] * . 0 0
survival at any given far-field stress o, is

o
R(om)

Il

1.5

exp —_O'j
BN

o0 B(o")
or R(c) = e 9

The average value of far-field stress, the most
meaningful statistic from small quantity notched strength
tests, can now be calculated. From Appendix A.I, the

average notched strength o, is related to the scale

N
parameter BN by

T, =

N BN I'(l1+1l/a) 1.7

We now hypothesize that the volume of integration can
be reduced to a thin strip perpendicular to the applied

loading. See Fig. 1lb. The strip has width "6" by plate




thickness "h." Within the strip —% <Y < % ’

R

t(x,y) t(x,0) (stress within the volume = stress at the

line Y = 0); ¢ < .05 a is sufficiently small for error to
be < 1%. The strip length could be from Y = a to the plate
edge (finite plate), or to 10 times maximum a (infinite

plate). The result of this narrowing of the integration

volume of interest is to reduce equation 1.4 to

L o -1/a
BN = | hé é [t(O0,y)]" dy B 1.8

We would expect such a calculation to give conservative
results, as the volume under consideration is the highest
risk vlume. The average predicted failure load can be

found by combining equation 1.8 with 1.7,

L ~1/0
Gy = (héé [t(o,y)1% ay BT (1+1/a) 1.9

In order to calculate the notched/unnotched strength
ratio, we make the following assumption:
o, the shape parameter,is identical
for the notched and unnotched specimens. -
The average strength for an unnotched specimen, using
the same volume of integration as for the notched specimen

(with a = 0) is
-1/a

Eo = [hdL]

BT (1+1/a) 1.10




This leads to an equation predicting the reduction

in strength with a notch; dividing equation 1.9 by 1.10,

-1/a
< [t(0,y>]°‘dy>

= 1.11
L—l/u

RN

QIQ
o 1=

where we omit the super-bar, but define the lefthand side
as average values. Note that as a -+ 0, GN/GO + 1 as it
should. We are now in a position to vary the parameters

in equation 1.11, evaluating the integral 1.1l numerically.

1.2 Point Stress Theory

This failure theory is introduced by manner of
comparison with Weibull theory. The size effect predicted
by point stress theory is, in fact, identical in form to

that of Weibull theory.

The loading geometry is identical to Fig. 1. The
point stress failure prediction is that when the stress
at some distance "do" into the material reaches the unnotched
ultimate stress, the sample fails. 3i.e. failure occurs when

(o] =0 1.12

where o is the unnotched ultimate [Whitney, Nuismer]. To
provide an absolute hole size effect in agreement with

experiment to vary with notch size per [Pipes, et.al.]




d, = (a/a)"/K 1.13

where a = notch half-length

a, = one times units used (arbitrary)

=
I

notch sensitivity parameter

m exponential parameter

Since the direction of fracture is presumed perpendicular
to the applied load, only the stress formula for o(x=0,y)
is required. The reference notch half size 2, is included

only to avoid awkwardness in the units of K.
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1.3 Numerical Integral Results

The stress profile in the selected volume of integration

is complex enough that equation 1.11 demands numerical
integration. The integration routine selected is DCADRE,
a part of the International Mathematical and Scientific

Library (IMSL).

1.3.1 Circular Hole

For a circular through hole geometry, we have the

infinite plate stress profile [Konish, Whitney]

o 14123 4 p® oy (567
£(0,Y) = Ltz0450"~ (Kp-3) (50°-%0°) 1.14

R

Y

where o)
R = hole radius

K; = classical stress concentration factor,
calculatable from the elastic constants

For a finite plate where % < %, we may use an isotropic

finite width correction (FWC) and multiply the results of
equation 1.14 by the FWC factor [Peterson]

FWC = 1 - 0.05 A + 1.5 A2

1.15
A = 2R/W

W

sample width




A hole size series was run in which the specimen
width was held constant, and the hole radius was varied
at a given Weibull shape parameter o. The material being

modeled was isotropic; thus, k; = 3.

The resulting GN/GO values were used to back-calculate

a dO value. Since, forcircular notches,

o]
N _ 1l .2 3 .4 _ o 5.6 _ 7 .8
- R

where £ = Red-

o}
this implies an inverse function "g,"

o
- N |
dO =g E; : R 1.17

The values of do calculated from the cN/oO values were

then fitted to the equation 1.13, taking logarithms:

R

R - 1Ink 1.18

1ln do =m 1ln (
(o)

The results, shown in Table 1, demonstrate that the
presumed form for do as a function of radius (1.13 or

1.18) is extremely accurate.

Increasing o is also seen to bring increased notch

sensitivity. Both k and m increase with increasing a, which

indicates a more rapid strength degradation in the presence of a




notch. (see Table 1, Fig. 2,3) Physically, a material
with high o has a very tight distribution of small flaws.
Thus, when we add a notch, it far outweighs any innate
flaw effects. Conversely for low o there are various

size flaws in the material, and much data scatter. The
addition of one more flaw (the notch) is almost unnoticed;
notch sensitivity (m and k) are low. Note that the curves
in Fig. 2,3 have a "kneeing over"; notch sensitivity

reaches a rough constant for o greater than about 30.

Table 1

Weibull Shape Parameter o versus notch sensitivity
Constants k and m for Circular Notch

o m k r*
0.313 3.89 0.985
0.386 5.49 0.987
10 0.520 9.70 0.990
12 0.573 10.75 0.986
15 0.560 14.0 0.983
20 0.611 16.8 0.996%
30 0.572 27.8 0.977%

* correlation coefficient from the least squares fit of
linear equation

four points (radii) used for each given a.

%* %
Same as *, except three points (radii) used for each given a.
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1.3.2 §8Slit Notch

For a through slit notch (crack), results similar to
the hole results were obtained. A degradation of strength
with increasing hole size is observed, and the notched
strength reduction calculated by Weibull integrals is very

conservative.

The theoretical stress profile [Savin] must be modified

for use in the numerical integral.* We let
t(0,Y) = /YZ_CQ Y > 1.01C

7.12 1.0lc > Y >C
The entire profile is multiplied by a finite width correction

factor [Paris, Sih]

1L
_|w mc| 2
FWC = [iﬁ:- tan -W] 1.20
where W = sample width
C = crack half-length

The integrals of equation 1.11 were performed for a given
width sample, with the crack sized varying at a given a.
The numerical integrals were used to back calculate a

value of dO by inverting the point stress criterion;

* The IMSL Routine (DCADRE) uses progressively smaller mesh
sizes and tries to limit the error between mesh divisions.

The theoretical profile is infinite at Y=C; while the integral

exists, this form is unsuitable for numerical integration.

12




since, for cracks,

QIQ
o I=

1

[

|
———~
q
ol
—————

N

thus 1
O..12
N
d =2¢ - |—] -1
o= ¢/ 5.
The results show that the variation of do with
size,

= L, _
1n do = m ln(co 1n k

fits the variation in notch strength extremely well.

(See Table 2). The variation in m and k with o may

seen in Figures 4, 5.

Table 2

crack

1.23

be

Weibull Shape Parameter a versus notch sensitivity

Constants k and m for Slit Notch

o m k
3 0.189 10.9
5 0.448 23.9
10 0.723 49.3
12 0.758 56.8
15 0.801 64.7
20 0.836 75.3

* Correlation coefficient from the last squares fit
linear form C
1n dO = m ln (E-) - 1ln k;

Four points (crack sizes) uled for each a.

13

r*

0.986
0.999
0.999
0.999
1.000

1.000
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1.4 Conclusions and Recommendations

I. The results of the Weibull calculation are conservative.

Compare the notch sensitivity constants with experiment

[Whitney, Kim 1976] for a [90/0/145]s Graphite/Epoxy:

Notch CALCULATED EXPERIMENTAL
Geometry USING a=20 (Curve Fit)
m k T om k
Hole 0.61 16.8 0.49 9.6
Slit 0.84 75.3 0.39 19.4

The higher values of k and m calculated by Weibull

integrals predict a more rapid degradation of notched
strength with larger notch size than is actually experienced.
For circular holes, this conservatism is on the order of

a design safety factor, with calculated notched strengths

on the order of 1/1.5 to 1/2 lower than seen experimentally.
For slit notches the calculation is extremely conservative.
One explanation for this is that the theoretical stress
profile, even our altered form 1.19 is more strenuous

than that actually experienced. The model is an atomically

thin crack; any machining takes the form of a slot.

Other reasons for conservatism on both circular and
slit notches are: The volume of integration is the highest

risk volume (highest stresses). Also, the Weibull theory

16




is a weak link theory (see appendix B) where failure of
any volume brings about failure of the whole. This is a
correct assumption for very brittle materials such as

ceramics, but is somewhat conservative for composites.

IT The notch sensitivity constants k, m are volume
dependent. If one chooses a larger volume, the
Weibull calculation predicts different notch sensitivity

constants m,k (at a given a). For example:

GEOMETRY CALC. USING CALC. USING
oa=10, WwW=2" =10, W=4"

m k m k

Hole 0.52 9.7 0.61 6.1

Slit 0.72 49.3 0.76 37.6

This suggests that the sample voOlume in a notch-size

series should be kept as constant as possible and practical.
One suggestion for correcting between various volumes used
experimentally is to define a standard volume, and scale
experimental results to the standard by multiplying by

the ratio of the theoretical calculations for the volumes.
That is, if we let

S = GN/GO experimental, at volume 2

S* = UN/OO experimental, "shifted" to standard volume 1

17




12 = UN/OO calculated for volume 2 at given o
Il = UN/OO calculated for volume 1 at given a

We let the change in volume be represented by a varying

width "w." Thus,

I
s* = s[—-l-] 1.23

Corrections of this type have been modest, on the order

of a few percent.

IIT The notch sensitivity of a material increases with

increasing a. A high o value (from unnotched tensile

tests) implies a very tight (narrow) distribution of
inherent flaws. The rapid strength degradation with notch
size for a material with high o implies that these inherent
flaws are small. Due to the inherent "perfection" of the
material, addition of a notch has a dramatic effect on

strength.

Materials with low a thus have lower notch sensitivites;
however, this is a mixed blessing. Low a values imply a
wide distribution of various size inherent flaws. The
addition of the notch (one more flaw) does not have as
much impact on strength. But with low o, the spread of
data becomes large. Designing to a given degree of

reliability, one is forced to accept very low stresses.

18




This is due to the equation relating reliability

"R"(0) to o and B for an unnotched specimen.

In o = In[-1ln R(o)] + 1n B 1.24

Qi

where o is the design allowable for the desired
reliability R. (see Appendix A Part II) For example, for
B= 5,000

R = .9999 (Probability of failure = 1/10,000)

o o allowable ¢ (average)
10 1990 4760
30 3680 4920

The low o material can use only a small percentage of its

average unnotched failure stress.

IV The assumed form 1.13 for the variation of ineffective

length with notch size used in the point-stress failure model

is confirmed by the Weibull integrals. The form was a
matter of convenient assumption, and is now satisfactorily

proven by the integral results. See Tables 1 and 2.

V Future Work Areas

The data base for notch sensitivity constants k and m
and tensile data scatter o needs to be expanded. This data
allows a fuller exploration of the brittle failure theory,

and also serves the designer.

19



The material constants k, m need to be related for
various notch geometries. This could be obtained through
a study of the stress solutions for general notch shapes,
and these solutions decayed to the specific geometries

of interest-hole, crack, etc.

20




Part 2 Biaxial Tension
2.1 Weibull Theory

A numerical integration can be used to predict
basically conservative notched strengths for a material
subjected to biaxial tension. The geometry studied was
that of a circular hole in an infinite plate, and the

material was assumed isotropic.

The direction of failure cannot be presumed as
it was in the case of uniaxial tension. We assume that
the most important stress is the opening (mode 1) stress
Og - See Figure 6. Under application of stresses Oy oy

far away from the hole,* the tangential, normal, and shear

stress shown in Fig. 6 are given by [Savin]

Gp = 7? [(l-pz) + (l-4p2+3p4) cos 28] 2.1
9 2 2. . 4
+ jg [(L-p“°) - (1-4p©+3p~) cos 28]
I 2 4
Oy = 5 [(1+p") = (1+3p°) cos 28 2.2
o 2 4
+ =L [(1+p%) + (1+3p%) cos 26]

* ghould the original problem have a non-zero 1! _ component,
this may be reduced to a biaxial stress state by?rotating
through an angle 8, where

27!
g = % tan—l 6'%0".
X Yy

The "prime" quantities are those of the original problem.

21
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g 0]

Tog = —T§ [l+2p2—3p4]sin.26 + 7;-[l+2p2-304] sin 29 2.3
R
where p =
X2+y2

Note that as the radius R - 0, all o terms vanish, and
we are left with the standard stress transformation

(rotation of axis) formulae. [Crandall & Dahl]

The Weibull integrals used will be for the opening

mode stress ¢ For a reliability function as in

5
uniaxial tension. (See equation 1.5, 1.6)

R(0) = e B(O) 2.4

where
o

B(o) = [ av 2.5

v

o
B

We again choose a high risk.volume; for biaxial tension,
however, we must investigate a number of rotation angles 6.
The volume has length L, width §, and plate thickness h.
See Figure 7. The length L is chosen to be long enough

to avoid finite width correction effects. The width §

is chosen "small" so that the stress is constant throughout

the integration volume.

We assume that X is the principal loading axis,

and divide equation 2.2 through by Oy

23




2

g
52 = === (1l+p“) + E%L (l+3p4) cos 29 2.6
X

g
where r EX = LOADING RATIO
X

Evaluating equation 2.5 for B(c), we use equation

2.6, and the fact that the volume element dV = dh dg where

c = X2+Y?

]

jon

o
ot

B(qx)

2 4
R r-1 R o
—— (l+(Z) ) + —7—(l+3(z) Ycos 20]7dg

2.7b
We combine the integral results and the material shape

constant B into a single shape constant for notched biaxial

failure

L 1 2 .4 4 ~1/a
_ r+ R r- R o
Bay = 3<£6£ [F5= (14 (3) )+75=(1+3(3) ) cos 28] d;>

2.8

This is useful, as we can relate the scale parameter to
the average notched failure strength by using (See Appendix
A.I)

O, = T(l+1/a) 2.9

BF 8BF
Note that equation 2.6 has inherently unknown constants
such as § within it; by normalizing the notched strength

to an equivalent volume unnotched strength, we can get

24




rid of the unknown constants. Since we do have an
isotropic material, we can compute an unnotched biaxial
strength based also on Og stresses. Simply let p > 0
in equation 2.8, (no hole)

_ -1/a
By = <haL[r“2“1 1‘-55 cos 2e]°‘> 2.10

Again, the scale parameter is related to the average

unnotched strength by

Op = BB T (1+1/a) 2.11

where EB = the average value of o, on failure.

We now ratio unnotched strength to notched

strength to eliminate some of the unknown constants:

. -1/a
4 a
r+l r-1 R
ooy <f [== <1+(——) ) + =5=(143(3) )cos 28] dg)

o]

B L—l/a[r;l + r;l cos 291-1

NOTE that this assumes that o stays constant for the
unnotched and notched strength tests. 2All items in
equation 2.12 may now be calculated for various angles o
at a given loading ratio r. The angle 8 which provides

g

the lowest ??E indicates the failure location (direction)
B
and value.

25




PLATE THICKNESS = h

FIGURE 7

VOLUME OF INTEGRATION FOR NUMERICAL INTEGRAL
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2.2 Numerical Integral Results (Circular hole)

The numerical integration necessary to evaluate

the average notched strength was performed by the IMSL

routine DCADRE. The numerical values used in this study

were:
hole radius R = 0.5"
integration length L = 5."
Weibull shape parameter o = 10.
The loading ratio r = gZ was varied from 0 to 10. The
X

result for r 0 = OY correctly predicts the uniaxial

strength.
Table 3

r Ofail 9pn/

0 90. 0.568
0.1 90. 0.584
0.5 90. 0.659
1. ANY 0.764
2. 0. 0.659
3. 0. 0.626
5. 0. 0.602
10. 0. 0.584

The failure direction is thus seen to "snap

through" so that it is always perpendicular to the

27




largest applied load. This helps avoid awkwardness in
the nature of OB , the unnotched strength; if 6 were

not 0° or 90°, there is no assurance that the unnotched
sample would ever fail in the direction 6. Thus, biaxial

unnotched strength o, is equivalent to the uniaxial

B
unnotched strength "oo" . At r = 1 we reach a state of
equal stresses for any 6, so the failure may propagate
in any direction.

The addition of the second load axis is also
seen to contribute to strength. This is explained as
follows. With a single axis load, say Oy only, there
are high tensile stresses at 6 = 90°. The addition
of oy provides compressive stresses which partially
offset the high tensile stresses in this critical region

at 8 = 90°.

The numerical integrals were performed for a
series of hole sizes and compared with data from a
quasi-isotropic graphite/epoxy laminate [0/145/90]S
[Daniel]. The results are shown first for uniaxial,
then biaxial strengths. The a value is not known, but

is probably in the 20-30 range from experience.




Table 4

Hole Diameter Exper. Notched Str. Exper. Calculated oN/oo
(2R) Inch ON , MPa GN/OO
a = 10 o = 25
1.0 219 0.436 0.568 0.429
0.75 231 0.460 0.584 0.434
0.50 255 0.508 0.608 0.441
0.25 276 0.550 0.651 0.454

The integrals for the calculated ON/OO used integration

L = 5", loading ratio r = 0. No finite width correction '
factors were used in experimental or calculated results.
The experimental results are bracketed by calculated
values for a = 10 and a = 25. The caculations for a = 25

are conservative.

Table 5
Hole Diameter Exper. Biax. Str. Exper. Calculated OBF/OB
2R Inch Opp MPa OBF/UB =15 5 = 5%
1.0 276 0.550 0.764 0.621
0.75 280 0.558 0.785 0.629
0.50 320 0.637 0.814 0.639
0.25 366 0.729 0.862 0.657

We see for the first time a non-conservative failure
prediction OBF/GB with the calculation up to 13% higher

than experiment. However, the data scatter in the
experimental results is large, and the results somewhat
inconclusive. (Experimental result OBF/OB = 0.558 is average

of two points 0.614, 0.543.)
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2.3 Conclusions and Recommendations

I The calculated biaxial failure loads are generally

conservative versus experimental data. That is, the

numerical Weibull integrals predict a more severe
strength degradation in a notched sample than we actually
experience. The few cases of non-conservatism (see Table
5) are inconclusive due to a scarcity of data. The
conservatism of calculation occurs as the calculations
use the highest risk volume with a "weak link" theory.

In actuality, there would be some "give" to the material.

IT The Weibull biaxial integration results accurately

predict the strengthening effect of the stress along

the second axis. This strengthening effect is due to
compressive stresses from one axis loading partially
cancelling the tensile stresses from the other axis

loading.

Further, the Weibull integration predicts within
15% the magnitude of the strengthing effect for equal
axis loading: (from Tables 4, 5)

Calculated UBF/O
Hole Diameter  Experimental o0,./0_ ©

2R Inch (0,=0,) (04=0y)
2 a=10  a=25
1.00 1.26 1.35  1.45
0.75 1.21 1.34  1.45
0.50 1.25 1.34  1.45
0.25 1.33 1.32  1.45
AVG 1.26 1.34  1.45
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where o../0 1is the biaxial strength with o_ = o
BF/ "o X y

divided by the uniaxial strength.

IIT The Weibull integration results for the failure
direction agree with the limited amount of experimental
data. Experimentally, the biaxial samples filed perpendi-
cular to the stronger load, with inconclusive results

for the equal biaxial loading case. [Daniel] Some of

the materials tested in reference [Daniel] were anisotropic,

and no predictive calculations have been performed.

Iv Future Work Areas:

Fracture of anisotropic materials in biaxial
tension can be similarly addressed by numerical evaluation
of Weibull integrals. The failure direction of such
materials can be predicted, along with some measure of
strength reduction in the presence of a notch. These
calculations should be supported by more biaxial failure
data. Having done this for the biaxial load case, it
should be simple to do the uniaxial load case as a

reduction.

Experience needs to be gained in how to properly
test samples in biaxial loading. The simple tube
pressurization test is, of course, not suitable for
notched geometries. The existing literature dealing

with this problem is very small.
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APPENDIX A: Mathematical Development of the Weibull

Distribution

I Mean and Standard Deviation

The generally used form for a cumulative distribution

function (or simply "distribution function") F is:

F(o) = P(os < 0) I.1
where Og is a random variable*, P denotes prqbability, and
o is the particular value of interest. For a set of data
which obeys a Weibull distribution, the @istribution

function is:

F(o) = 1 - expl-(o/8)%1 o >0 I.2
where exp is exponential function
B is the scale or location parameter
o is the shape parameter
Mathematicians often use the equivalent notation

s ¢ wes,o) 1.3

to show that ¢ obeys a Weibull distribution.

We are often interested in the reliability, i.e.

the probability that the random variable (outcome of an
experiment) exceeds the particular value of interest.

This reliability is expressed as

*A "random variable" is simply the outcome of an experiment.
For example, the value shown on a fair die after a die toss
is a random variable.
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R(o) = P(os > 0) I.4
or R(g) = 1 - F(0)

and, for a Weibull distribution, is given by:

R(0) = exp[-(o/8)%1 o > 0 I.5

We now proceed to f£ind the mean or average in terms
of the parameters ao,B8. To get the probability density
function (p.d.f.) p{c) of a distribution, take the
derivative as follows:

Since p.d.f. p(o)do = Plo-do < O < o + do] I.6
_ d
p(o) = g5 [F(o)] I.7

Using the Weibull form for the distribution function F(I.1),

a=-1 ,-a

p(o) =0 B~ expl-(a/B)%] 1.8

The formula for obtaining the mean is:

Elo ] = c = o p(o) do I.9

0—38

where ¢ denotes the average, and E is the expected value
operator. The form for thé Weibull p.d.f. I.8 is
substituted into I.9. The ensuing integration uses the
change of variable

B-d Ga

x=
which does not change the limits of integratién. The

final expression is
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(1+1/a) =1 X

cg=8fx dx I.10
(o]

This form is identical to the Gamma Function T, a table
look-up in mathematical handbooks. Thus we have

g = BT (1+1/a) I.11
For « > 1, 0.886 < T < 1. , so that o < B; or the average
is less than the scale parameter due to the skewness of

the distribution.

The standard deviation for a Weibull distribution

may be found similarly from the basic definition:

St.Dev. § = {E(cg] - (E[Gs])z}% I.12

When the definition I.12 is used with the p.d.f. definition

I.8, it yields:

S = {(B2[r(1+2/a) - T2(1+1/0)]}2 I.13




II Statistical Inference of Weibull Parameters

Given a set of data from an experiment, we would
like to predict point extimates o and & for the entire
(infinite) population. One way to do this is by use of
logarithms; this method should be used only if a digital
computer or programmable calculator is not available.
The second method is that of solution of the maximum
likelihood equations; this demands use of a computer

(or programmable calculator).

Logarithm Method

The data are ranked from lowest to highest, and a
ranking statistic is used. The rank can be simple, mean,
median, hazard, or Hazen; but there is a preference for
the median rank. This median rank is applied to the ranked
data as

Pj from tables
or P, = 1—:—%4% II.1

which gives a series of j ranks of the n total data points.
This rank statistic is used as an approximation to the
distribution function F (see I.l). It is helpful to draw

a graph of data value {(abcissa) versus rank (ordinate).
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We proceed to manipulate the formula I.2 into a

convenient linear form. Since P(cs < 0g) = F(ag),

1-F = expl-(o/8)"] I1.2
Taking natural logarithms,
In(1-F) = -(0/8)° II.3
Clearing the minus sign and again taking natural
logarithms,
In(-1n(1-F) = aln(o/B) ITI.4a

or

X o

lno = In[-1n(1-F)] + 1nR II.4b

The equation II.4b is in linear form for a linear squares
analysis of data points 1lno versus ln[-1ln(l1-Rank)]. The

slope is 1/a, the intercept is 1nB.

Note that the form II.4b is also usable to calculate
an allowable o for a given structural reliability R = 1-f,

once the o and B are known.

Problems with logarithm method: The a,B8 found by
linear regression on II.4b are point estimates. To obtain
meaningful interval gstimates of say o requires us to
assume that the least squares statistics 1/0 and 1né are
normally distributed. This assumption seems doubtful at
best. The logarithm method also has difficulty handling

censored data points, which can occur in fatigue experiments
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(as run-out, etc.) .

Maximum Likelihood Method

This method has a sound theoretical basis and allows
interval estimates to be made for o,8. However, it

demands solution of a very non-linear equation.

The maximum likelihood estimator en for a set of.
n random variables X is given by the solution of:

L(®) = f(x.;e)f(xz;e) .o f(xn;ﬁ) IT.5

n r
o (¥i a-1 X
MAX L(8)= l = |—= ] exp|- ;—} II.6

L B LB B

i=1
where £ is the p.d.f. of X, and 6 is the true population
arameter, and L(6) reaches a maximum at 6 .[A.l] maximi-
zation equation II.6 acts to maximize the likelihood of

"legitimizing"” the outcome of a given experiment.[A.2]

The maximum likelihood equations for &,B8 are given by:

) X. 1nX } 1nx,
. i=1 * 1 _i=1 *
k(@) = 0= —m -z - I1.7
n & a n
I X{
i=1
) Lo 1/4
B = |5 1.X5 II.8
i=1

The 4,8 are point estimates to the true population parameters

a,B. [A.3] 1In practice, equation II.7 is solved for & and
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the result used in II.8 to get §. For small sample sizes,
the &,é estimates from equations II.7, II.8 are biased.

‘Fortunately, there are correction factors available which
depend only on n, the number of data points [A.4]. These

correction factors B(n), shown below, thus provide unbiasing

so that

E[B(n) al II.9

i
e

TABLE A.1l

Unbiasing Factors B(n) for MLE of a

10 11 12 13 14 15 16

.859 .872 .883 .893 .901 .908 .914

28 30 32 34 36 38 40
.951 .955 .958 .960 .962 .964 .966

52 54 56 58 60 62 64

.974 .975 .976 .977 .978 .%79 .980

76 78 80 85 90 100 120
.983 .983 .984 .985 .986 .987 .990
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Interval estimates for o and B may be obtained

for any desired level y of significance desired. [A.4]

The intervals can be one-sided or two-sided.

[A.1]

[A.2]

[A.3]

[A.4]
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APPENDIX B: Physical Development of the Weibull Distribution

The Weibull distribution was developed as a distri-
bution of wide utility for fitting data. It has a parti-
cular physical significance in treating fracture data of
brittle material. The central thesis of this concept is
that the strength of a material cannot be expressed by
a single number. The risk of breakage may vary throughout
the material; the break site need not be the site at which

the ultimate stress is first reached.

If the material is viewed as a series of n volume
elements and the individual element failure probabilities
are Sl, SZ""Sn’ then the survival of the whole (no failure)
depends on the survival of all n elements. i.e.

1-s = (l-Sl)(l~Sz) oo (l—Sn) 1.1

NOTE the "weak link" effect implied here; failure of any
subpart brings failure of the whole. For infinitely small
elements, the probability of failure in any one given
element becomes vanishingly small, thus, in 1.1 we multiply
the right-hand-side and omit the higher order terms:

S = 8,8

S S 1.2

1273 *°° "n
The probability of an individual volume failure is

proportional to the volume; letting F(x) be the distribution
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function for the infinitely small volume,

S; = Fi(U) av i=1,2,...n 1.3

where Fi is finite and dV is infinitely small.
The value of ¢, which could represent stress or strain, is
in general a function of position, i.e. o = o(X). If

OMAx represents the maximum stress at any point in the

material, then the local stress may be considered a

product of o and a geometric locus function t(?) so that

MAX

g =0 . t(?) 1.4

MAX

From 1.1, we obtain generally that

log(l-S) =
u

It~

log(1-8 ) 1.5
1 H

As the number of volume elements, n, increases indefinitely,
Su converges to zero, so that

log(l-Su) = -SU 1.6

Using equation 1.5 as n » o ,

n
log(l-8) = =lim ] S 1.7
n-o H
In the 1limit, using 1.3 with 1.7,
log(l-8) = =/ F(o)dv 1.8
A\
If we define for simplicity
B =« F(o)dv 1.9

\
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Then the distribution function for the entire body

F(o) = 1 - e B(O)

1.10
This F gives the probability of failure for the outcome of
any particular experiment as a function of the applied

stress o.

Weibull [B.l] chooses an elementary distribution

function which satisfies equation 1.1

O=0 o
F(c) = 4

B 1.11

where Uu is the value below which no volume will ever

fail (usually taken to be zero).
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